

Subject Guide – Computational Fluid Dynamics

Shortened Name	CFD	Semester	2-2023
Class Time (weekly)	Fri, 9-12	Lecture hours	3h x 15w
Subject Code	090125208	Assignment and self-study	5h x 15w
ECTS credits	6	Preparation for exam	30
KMUTNB Credits	3(3-0-6)	Total working hours/semester	150

1 Revision date of this document, reasons for revision

• 03.01.2023

2 Course description

Governing Equations of Fluid Dynamics; Classification and Characteristic Lines of Partial Differential Equations; Foundations of Numerical Solution; Iteration Schemes for Elliptic Differential Equations; Numerical Solution of Parabolic Differential Equations; Numerical Solution of Hyperbolic Differential Equations; Finite Volume Method; SIMPLE Algorithm; Rhie-Chow Interpolation. The course will include workshops on writing three basic CFD codes and developing an in-house CFD code for solving engineering problems.

3 Lecturer/Teaching Assistant

- Assoc. Prof. Dr. Ekachai Juntasaro
- Dr. Ekkapot Charoenwanit
- Mr.Nattawood Prasartthong (Research Assistant)

4 Expected learning outcomes (in accordance with the MAE program ELOs)

Primary LOs (primary content of class, knowledge is explicitly evaluated (for example, by exams), larger share of overall grade)

- Ability to define a technical task or problem, to analyze/structure it and formulate a strategy to solve it (GELO 1)
- Knowledge and understanding of methodology of simulation and design (SELO 1)

Secondary LOs (not primary content of class, but implicitly taught by application (for example, by project work or assignments) and evaluated, lower share of overall grade)

• Report writing skills (GELO 3)

Note: These ELOs correspond to the MAE program ELOs (referenced in parantheses).

5 Assessment

The Sirindhorn International

Each student will be individually assessed based on the performance on CFD code coursework and paper exam, with the overall grade resulting from the shares as below:

Evaluated items	shares
Basic CFD code coursework, 9 hours, on content of " Sessions 5, 7, 9 " of the class	30%
Paper exam, 3 hours, on content of " Sessions 10, 11, 12 " of the class	40%
In-house CFD code coursework, 9 hours, on content of " Sessions 14, 15, 16 " of the class	30%
Total	100%

6 Teaching materials

- Power-point presentations for lectures, handed over as reference and learning material
- E-books are provided by email before the first day of the class

7 Books and references

- 1) Main Textbook: *Computational Fluid Dynamics I* + *II* by Prof. Dr.-Ing. D. Hanel, Institute of Aerodynamics, RWTH Aachen University.
- 2) Main Textbook: *Numerical Methods for Engineers and Scientists* by Joe D. Hoffman (Latest Edition), Marcel Dekker.
- 3) Main Textbook: An Introduction to Computational Fluid Dynamics: The Finite Volume Method by H. K. Versteeg and W. Malalasekera (Latest Edition), Prentice Hall.
- Supplementary Textbook: Computational Fluid Mechanics and Heat Transfer by John C. Tannehill, Dale A. Anderson and Richard H. Pletcher (Second Edition), Taylor&Francis.

The book of item 4 is not required to take part in the course but recommended as background reading.

8 Course schedule

Week	Date/Month	Activity, Class Title (Book Chapter)	Evalu- ation %	Class Hours
1	05/01	Course Introduction & Governing Equations of Fluid Dynamics		3
2	12/01	Classification and Characteristic Lines of Partial Differential Equations		3
3	19/01	Foundations of Numerical Solution		3
4	26/01	Iteration Schemes for Elliptic Differential Equations		3
5	02/02	Workshop on writing a basic CFD code: Elliptic solver	10%	3
6	09/02	Numerical Solution of Parabolic Differential Equations		3
7	21/02	Workshop on writing a basic CFD code: Parabolic solver	10%	3
8	01/03	Numerical Solution of Hyperbolic Differential Equations		3
9	08/03	Workshop on writing a basic CFD code: Hyperbolic solver	10%	3
10	15/03	Finite Volume Method		3
11	22/03	SIMPLE Algorithm		3
12	29/03	Rhie-Chow Interpolation		3
13	05/04	Paper exam	40%	3
14	12/04	Workshop on developing an in-house CFD code for solving engineering problems I		3
15	19/04	Workshop on developing an in-house CFD code for solving engineering problems II	10%	3
16	26/04	Workshop on developing an in-house CFD code for solving engineering problems III	10%	3
		Sum	100%	48

THE SIRINDHORN INTERNATIONAL THAI-GERMAN GRADUATE SCHOOL OF ENGINEERING

9

Details on the evaluation of Expected Learning Outcomes

		Basic CFD codes 30%	Paper exam 40%	In-house CFD code 30%	Total
GELO1	Ability to define a design task or problem, to analyze/structure it and formulate a strategy to solve it	10%	20%	10%	40%
SELO1	Knowledge and understanding of methodology of simulation and design	10%	20%	10%	40%
GELO3	Report writing skills	10%	-	10%	20%