

Subject Guide – Thermodynamics for Mechanical Engineering

Shortened Name	TdME	Semester	1-2023
Class Time (weekly)	Tue, 13-16	Lecture hours	3h x 15w
Subject Code	090125120	Assignment and self-study	5h x 15w
ECTS credits	6	Preparation for exams	30
KMUTNB Credits	3(3-0-6)	Total working hours/semester	150

1 Revision date of this document, reasons for revision

• 26.06.2023

2 Course description

Phenomenology of thermodynamics; concepts of equilibrium, temperature, and reversibility; 1st and 2nd laws of thermodynamics; formulation of thermodynamic properties of substances and equation of state; application of thermodynamic principles to analysis of performance of engineering components and systems. Students will also take part in a research seminar.

3 Lecturer

• Dr. Ampol Likitchatchawankun

4 Expected learning outcomes (in accordance with the MAE program ELOs)

Primary LOs (primary content of class, knowledge is explicitly evaluated (for example, by exams), larger share of overall grade)

- Ability to define a technical task or problem, to analyze/structure it and formulate a strategy to solve it (GELO 1)
- Knowledge and understanding of scientific fundamentals relevant for the understanding of the behavior of solid body and fluids in engineering applications (SELO 2)

Secondary LOs (not primary content of class, but implicitly taught and evaluated by application (for example, by project work or assignments), lower share of overall grade)

- Ability to independently conduct a literature study on a given topic, identify and acquire relevant sources, extract and sum up the essence in writing (GELO 5)
- Ability to present a project in front of a professional audience (GELO 6)

Note: These ELOs correspond to the Program ELOs (referenced in parentheses).

5 Assessment

The Sirindhorn International

Each student will be individually assessed based on the performance on homework assignments, written exams/quizzes, and seminar, with the overall grade resulting from the shares in the table below:

Evaluated items*	shares
Homework submission	10%
Quiz 1 (Midterm exam 1)	20%
Quiz 2 (Midterm exam 2)	20%
Quiz 3 (Pre-final exam)	20%
Quiz 4 (Final exam)	20%
**Seminars of related topics to this class with short reports	10%
Total	100%

*I reserve the right to make small changes to the grading breakdown

- All quizzes are closed-book and paper-based
- Each quiz consists of *Part A* (5 conceptual questions with short answers, drawing graphs, and simple mathematical derivation) and *Part B* (1 problem with multiple parts to assess the problem-solving skills. Necessary information such as tables for some properties)
- **Seminar: Participation of 4 seminars in topics related to Thermodynamics/Heat and Mass Transfer/ Transport and Interfacial Phenomena/ Energy Technology/ Renewable Energy hosted by TGGS/KMUTNB/Partner Universities.

6 Teaching materials

- Power-point presentation of each lecture is handed over (before each class)
- E-books are provided by email before the first day of the class

• The links of relevant VDOs from youtube are also given

7 Books and references

The Sirindhorn International

1) Fundamentals of Engineering Thermodynamics, 8thor 9thEdition, M.J. Moran and H. N Shapiro, D.D. Boettner, and M.B. Bailey, John Wiley & Sons, Publishers, 2014 or 2018 (MAIN TEXTBOOK)

*Important note: Earlier editions of this book will work just as well.

** For the reference to homework and discussion, I use the 8th edition.

8 Course schedule

Week	Date/Month	Activity, Class Title (Book Chapter)	Evalu- ation %	Class Hours
1	01/08	Introduction – concepts, properties, measurements, problem solving methodology (Ch1) Kinetic and Potential Energies; Energy transfer by work and heat (Ch2)		3
2	08/08	First law of thermodynamics; Thermodynamic cycles (Ch3)		3
3	15/08	Evaluating pressure, specific volume, and temperature; Phase diagrams (Ch3)		3
4	22/08	Quiz I (Close system involving phase change)	20%	3
5	29/08	Ideal gas model; Physics outlook: equipartition principles and specific heat, Polytropic processes; non-ideal gases and liquids (Ch3)		3
6	05/09	Quiz II (Close system involving ideal gas)	20%	3
7	12/09	Mass conservation equation for open systems; Applying mass balance to an open system (Ch4)		3
8	19/09	Energy conservation equation for open systems; Bernoulli's equation; throttling devices (Ch4)		3
9	26/09	Problem solving for hydroelectric power generation and steam turbines (Ch4) Second law of thermodynamics; Reversible vs. irreversible processes (Ch5)		3
10	03/10	Quiz III (Open system)	20%	3
11	10/10	Clausius inequality; Defining entropy; Understanding entropy; Phase diagrams with entropy (Ch6)		3
12	1710	Thermodynamic cycles with the T-s diagram; Tds equations; Entropy of ideal gases and incompressible fluids (Ch6)		3
13	24/10	Entropy for closed and open systems and problem solving (Ch6)		3
14	31/10	Quiz IV (Entropy)	20%	3
15	Not specific	4 Seminars	10%	3
	Throughout the semester	Eight (8) homework submissions	10%	-
		Sum	100%	45

9 Content details

Chapter	Title	Lesson (L) Contents		
1	Getting Started: Introductory Concepts and Definitions	 Defining Systems Describing Systems and Their Behavior Specific Volume, Pressure, Temperature Engineering Design and Analysis Methodology for Solving Thermodynamics Problems 		
2	Energy and the First Law of Thermodynamics	 Reviewing Mechanical Concepts of Energy Broadening Our Understanding of Work and Energy Energy Balance for Closed Systems Energy Analysis of Cycles 		
3	Evaluating Properties	 p-v-T Relation Phase Change Retrieving Thermodynamic Properties Evaluating Specific Internal Energy and Enthalpy Specific Heats cv and cp Ideal Gas and real gas Polytropic Process Relations 		
4	Control Volume Analysis Using Energy	 Conservation of Mass and Energy for a Control Volume Nozzles/Diffusers, Compressors/Pumps, Heat Exchangers, Throttling Devices System Integration Transient Analysis 		
5	The Second Law of Thermodynamics	 Statements of the Second Law Irreversible and Reversible Processes Second Law Aspects of Refrigeration and Heat Pump Cycles Interacting with Two Reservoirs Carnot Cycle 		
6	Entropy	 The 1st and 2nd T dS Equations Entropy Change of an Incompressible Substance and an ideal gas Entropy Balance for Closed Systems Entropy Rate Balances for Control Volumes Heat Transfer and Work in Internally Reversible, Steady-State Flow Processes 		

THE Sirindhorn International M TGGS

THE SIRINDHORN INTERNATIONAL THAI-GERMAN GRADUATE SCHOOL OF ENGINEERING

10 Details on Evaluation of Expected Learning Outcomes

		Quiz 1	Quiz 2	Quiz 3	Quiz 4	Seminar	Homework	Sums
		20%	20%	20%	20%	10%	10%	
GELO1	Ability to define a design task or problem, to analyze/structure it and formulate a strategy to solve it	10%	10%	10%	10%		10%	50%
SELO2	Knowledge and understanding of scientific fundamentals relevant for the understanding of the behavior of solid bodies and fluids in engineering applications	10%	10%	10%	10%			40%
GELO5	Ability to independently conduct a literature study on a given topic, identify and acquire relevant sources, extract and sum up the essence in writing					5%		5%
GELO6	Ability to present a project in front of a professional audience					5%		5%